
Ensuring Cache Freshness in
On-Demand Ad Hoc Network Routing Protocols

Yih-Chun Hu
Carnegie Mellon University

Pittsburgh, PA, USA

yihchun@cs.cmu.edu

David B. Johnson
Rice University

Houston, TX, USA

dbj@cs.rice.edu

ABSTRACT

In a wireless ad hoc network, nodes cooperate to forward packets
for each other over possibly multi-hop paths, to allow nodes not
within direct wireless transmission range to communicate. Many
routing protocols have been proposed for the ad hoc network en-
vironment, several of which operate on-demand and utilize a route
cache listing links that this node has learned. In such protocols,
aggressive caching of overheard routes can significantly improve
performance; in particular, overhead can be reduced by leverag-
ing information received in packets overheard or forwarded from
other nodes, including other routing packets and the source routes
on other data packets. Unfortunately, such information sharing can
substantially increase the risk of cache cross-pollution, since stale
routing information in one node’s cache, representing a link that no
longer exists, can easily be added into the caches of other nodes.
Even when a node has actually learned that a link no longer exists,
it is still possible for that node to again hear the stale information.
In this paper, we present a new mechanism which we call epoch
numbers, to reduce this problem of cache staleness, by prevent-
ing the re-learning of stale knowledge of a link after having earlier
heard that the link has broken. Our scheme does not rely on ad hoc
mechanisms such as short-lived negative caching; rather, we allow
a node having heard both of a broken link and a discovery of the
same link to sequence the two events in order to determine whether
the link break or the link discovery occurred before the other.

Categories and Subject Descriptors

C.2.1 [Computer- Communication Networks]: Network Archi-
tecture and Design—wireless communication, packet-switching
networks; C.2.2 [Computer- Communication Networks]:
Network Protocols—routing protocols; E.1 [Data Structures]:
Distributed Data Structures

General Terms

Algorithms, Design, Reliability

Keywords

DSR, Dynamic Source Routing, ad hoc networks, epoch numbers,
route cache, theory, bounded latency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POMC’02, October 30–31, 2002, Toulouse, France.
Copyright 2002 ACM 1-58113-511-4/02/0010 ...$5.00.

1. INTRODUCTION

In a wireless ad hoc network, mobile nodes cooperate by for-
warding packets for each other to allow communication between
nodes not otherwise in direct wireless transmission range. Ad hoc
networks do not require any infrastructure such as base stations
or access points, and do not require any centralized administration
or control; the network is entirely self-organizing between the peer
mobile nodes that form the network. Ad hoc networks hold promise
in applications where no existing network infrastructure exists, or
where the existing infrastructure cannot be used for reasons such as
security, usage cost, or insufficient resources. For example, work-
ers providing emergency relief following a natural disaster might
communicate using an ad hoc network, as might soldiers in a mili-
tary operation. Routing within such networks is a challenging prob-
lem, due to factors such as node mobility, limited wireless transmis-
sion range, wireless transmission interference, and changes in the
wireless propagation environment.

Many proposed ad hoc network routing protocols, including
DSR [10], LAR [12], SSA [2], and ABR [13], operate on-demand
and use a route cache to choose routes; these protocols also use
source routing, such that each node maintains a cache of all routes
that it has previously discovered or overheard in other packets, and
the sender of a packet chooses a route for each packet it wishes to
send using routes from its route cache, possibly combining rout-
ing information learned in different ways over time. This use of
caching can substantially reduce the overhead of the routing proto-
col and also reduces the latency in delivering data packets when a
cached route is already available.

However, routing cache staleness presents a serious challenge to
such protocols. Caches represent learned portions of the network
topology, but a cache entry may become invalid due to changes
such as two nodes moving out of wireless transmission range of
each other; a node is not notified when one of its cache entries be-
comes invalid, unless the node actually attempts to use the cache
entry in routing a packet it sends. Although a periodic routing pro-
tocol such as a link-state or distance-vector routing protocol could
distribute updated information in a somewhat timely manner, peri-
odic protocols have been shown to have higher overhead in a num-
ber of studies [1, 7], and periodic protocols still take some amount
of time to detect a link failure and to distribute this information.

When a node uses information from its route cache that was
learned from overheard packets, the cache staleness problem is
compounded, since stale information could circulate in the network
indefinitely. For example, one node may use some stale infor-
mation to route a packet that it sends, allowing a number of
nodes to overhear that packet and to also cache that stale rout-
ing information. If any node that overheard the use of the route

25

"A" "A,B" "A,B,C"
DCBA

id=2 id=2id=2

Figure 1: An example of DSR Route Discovery. Node A is dis-
covering a route to node D. Each node forwards the ROUTE

REQUEST from A, adding its own address to the list in the
packet; the combination of the initiator address (A), the target
address (D), and the request identifier (2) assigned by node A
uniquely identifies this Route Discovery.

does not subsequently overhear the corresponding route breakage
notification, that node will be left with a stale link in its route cache,
which it may later use in routing its own packets.

In this paper, we present a new mechanism, which we call epoch
numbers, for reducing the amount of stale information in each
node’s route cache. We achieve this improved cache management
by preventing a node from re-learning stale information about a link
after having earlier heard that this link has broken. Our scheme
does not rely on ad hoc mechanisms such as short-lived negative
caching of routing information; rather, we allow a node, having
heard that a link has broken and having heard a discovery of the
same link, to sequence the two events and determine whether the
link break or the link discovery occurred more recently than the
other.

First, in Section 2 of this paper, we summarize the operation of
the Dynamic Source Routing protocol (DSR), as an example ad hoc
network routing protocol, in which we describe our work. Section 3
describes our approach using epoch numbers, Section 4 provides
an analysis of the properties our approach achieves, and Section 5
presents conclusions.

2. OVERVIEW OF THE DYNAMIC SOURCE

ROUTING PROTOCOL (DSR)

This section provides an overview of the Dynamic Source Routing
protocol (DSR) [8, 9, 10] as an example ad hoc network routing
protocol, on which we base our development of epoch numbers
for ensuring routing cache freshness. DSR is one of a number of
routing protocols proposed within the Mobile Ad Hoc Networks
(MANET) Working Group of the Internet Engineering Task Force
(IETF) [6], the principal protocol standards development body for
the Internet. Similar techniques for solving cache staleness by se-
quencing link detection and breakage information could be applied
to other ad hoc network routing protocols.

The operation of DSR is based on source routing, in that the
sender of a packet determines the complete sequence of hops to
be used as the route for that packet to its destination. In the basic
version of DSR, the source route for each packet is represented in
the header of the packet.

DSR divides the routing problem in two parts, Route Discovery
and Route Maintenance, both of which operate entirely on-demand.
In Route Discovery, a node actively searches through the network
to find a route to an intended destination node. While using a route
to send packets to the destination, Route Maintenance is the pro-
cess by which the sending node determines if the route has broken,
for example because two nodes along the route have moved out of
wireless transmission range of each other.

A node that has a packet to send to some destination searches
its route cache for a route to that destination. If no cached route is
found, the sending node initiates Route Discovery by locally broad-
casting a ROUTE REQUEST packet containing the destination node
address (known as the target of the Route Discovery), a list (ini-
tially empty) of nodes traversed by this ROUTE REQUEST, and a
request identifier from this source node. The request identifier, the
address of this source node (known as the initiator of the Route
Discovery), and the target address together uniquely identify this
Route Discovery. An example of DSR Route Discovery is shown
in Figure 1.

A node receiving a ROUTE REQUEST checks to see if it has pre-
viously forwarded a REQUEST from this Discovery by examining
the IP Source Address, target address, and request identifier. If
it has recently seen this identifier, or if its own address is already
present in the list of nodes traversed by this REQUEST, the node
silently drops the packet. Otherwise, the node appends its address
to the node list in the REQUEST and forwards the REQUEST. When
a REQUEST reaches the target node or a node with a route to the
target in its route cache, this node returns a ROUTE REPLY to the
initiator of the ROUTE REQUEST. The ROUTE REPLY contains a
copy of the node list from the REQUEST, and can be delivered to
the initiator node by reversing the node list, by using a route back
to the initiator from its own route cache, or by “piggybacking” the
REPLY on a new ROUTE REQUEST targeting the original initiator.
When the initiator of the request receives the ROUTE REPLY, it
adds the newly acquired routing information from the REPLY to its
route cache for future use.

In Route Maintenance, a node forwarding a packet for a source
attempts to confirm that the packet successfully reached the next
hop in the route. A node can make this confirmation using a link-
layer acknowledgement (such as is provided in IEEE 802.11 [5]),
a passive acknowledgement [11], or by means of a network-layer
acknowledgement. A packet is possibly retransmitted if it is sent
over an unreliable Medium Access Control (MAC) layer, although
it should not be retransmitted if retransmission has already been
attempted at the MAC layer. If a packet is not acknowledged as de-
scribed above, the forwarding node assumes that the next-hop des-
tination is unreachable over this link, and sends a ROUTE ERROR

to the source of the packet, indicating the broken link. A node re-
ceiving a ROUTE ERROR removes that link from its route cache.
An example of DSR Route Maintenance is shown in Figure 2.

A number of optimizations to the basic DSR protocol have been
proposed [9, 10]. In this paper, we describe only those optimiza-
tions that are affected by the changes we make to the protocol. One
example of such an optimization is packet salvaging. When a node
forwarding a packet fails to receive confirmation that the packet
has been received by the next-hop destination, in addition to send-
ing a ROUTE ERRORto the source of the packet, the node may at-
tempt to use an alternate route to the destination, if it knows of one.
Specifically, the node searches its own route cache for a route to

DCBA

Figure 2: An example of DSR Route Maintenance. When for-
warding a packet from node A to node D, node C detects that
the next link along the source route (the link from C to D) is
broken and returns a ROUTE ERROR to node A, the original
sender of the packet.

26

the destination; if it finds one, then it salvages the packet by re-
placing the existing source route for the packet with the new route
from its route cache. To prevent the possibility of infinite looping
of a packet, each source route includes a salvage count, indicating
how many times the packet has been salvaged in this way. Packets
with salvage count larger than some predetermined value cannot be
salvaged again.

Another optimization allows nodes in DSR to learn new infor-
mation by overhearing the source routes on packets sent by other
nodes. This optimization has been shown to significantly improve
the performance of DSR [15]. Unfortunately, this optimization also
provides a means of further spreading invalid cache information,
which can result in decreased routing performance [15, 3].

In this paper, we focus on reducing the invalid cache information
spread through overhearing of invalid links in routing packets and
in source routes. In particular, we focus on those invalid links that
have already been found to be broken. Other work has focused on
reducing the number of links in the cache that entered the cache
while the link was valid but have become invalid through network
mobility [3], and also on preventing the discovery of links that are
soon to expire [2, 4, 13]. Some previous work has used ad hoc tech-
niques, such as limited-lifetime negative cache information, to re-
duce the chance of spreading incorrect information [16], or through
multipath routing, to increase the probability of successful delivery
in the presence of failed links [18, 17]. In this work, however, we
focus on the cause of cache corruption, and we identify one piece
of information that can eliminate much of the problem. We then
propose how that information can be added to an ad hoc network
routing protocol using entirely “soft state” such that the loss of the
state, for example due to node failure, does not harm the correct
operation of the protocol.

3. PROPOSED APPROACH

3.1. Idealized Epoch Numbers

Our approach to reducing the amount of invalid information in the
cache is to have enough information to correctly sequence new link
discovery and link breakage information. When new link discovery
and link breakage information can be correctly sequenced, stale
information cannot re-enter the cache after it has been deleted. For
example, if a link is down, and a node has discovered that it is
down, another node’s stale cache entry can be determined to be
stale.

First, we will describe an idealized version of epoch numbers,
which we use to perform this sequencing. Our idealized model
does not take into account the finite size of integer representations.
In Section 3.2, we present a solution to integer wraparound based
on what we call generation numbers, which provide a compact rep-
resentation of how long a piece of information has persisted in route
caches throughout the network, without the need for synchronized
clocks or relatively large timestamp information.

To sequence conflicting link status information, each node main-
tains an epoch number for itself, which it associates with each link
to a newly detected neighbor and with each new link break message
that this node itself sends. For example, if during node A’s epoch
number i, node A discovers that node B is a neighbor, then node A
associates the link A → B with the epoch number i (independent
of the epoch number at node B). Each route cache includes both
positive (discovered link) information and negative (broken link)
information, together with the associated epoch number of each
link; each packet containing routing information also includes the
associated epoch number of the information from the node’s cache.

R
O

UTE R
EQ

UEST

R
O

UTE R
EQ

UEST

R
O

UTE R
EQ

UEST
R

O
UTE R

EQ
UEST

R
O

UTE E
RRO

R

R
O

UTE E
RRO

R

R
O

UTE E
RRO

R

R
O

UTE E
RRO

R

epoch i epoch i+1epoch i -1

Figure 3: Advancement of the epoch number at a node. Each
time a node first originates or forwards a ROUTE REQUEST

after it has originated a ROUTE ERROR, the node increments
its epoch number. The figure shows the epoch number of a
single node, with time progressing from left to right.

Links are sequenced using epoch numbers from the sending side,
since it is easier to sequence broken link (ROUTE ERROR) mes-
sages at the sending side.

When a node has a link cached that conflicts with a newly heard
message containing routing information, the node chooses to trust
the information with the higher epoch number. When a link de-
tection and a link breakage have the same epoch number, the link
breakage information takes precedence. The epoch number is in-
creased as necessary to maintain proper sequencing, as illustrated
in Figure 3. In particular, whenever a node first originates or for-
wards a ROUTE REQUEST packet after it has originated a ROUTE

ERROR, the node increments its own epoch number. Related ap-
proaches have been used previously in distributed systems such as
for ordering events or states within the system.

As an example of the use of epoch numbers, suppose node A has
a link cached from node B to node C with epoch number 1 and
uses this link as part of a route. Then node A would only accept
a ROUTE ERROR for this link with epoch number greater than or
equal to 1. Once A hears such a ROUTE ERROR, for example with
epoch number 2, node A will ignore any link from B to C with
epoch number less than or equal to the epoch number in the ROUTE

ERROR (2, in this example). If A hears such a link, it will not add
that link to its cache. This prevents A’s cache from being polluted
with stale information once it has learned fresher information.

3.2. Provisions for Wraparound

Since epoch numbers are integers with finite length, yet they prop-
agate through the network, we need a mechanism for dealing with
the potential for integer wraparound.

First, we limit the rate at which new epoch numbers are used.
Since our goal is to limit the rate at which the epoch number space
can wrap around, and because of the way in which epoch numbers
are compared, the rate limit can be an amortized rate limit over half
the epoch number space. For example, we may specify a maximum
rate of 128 epoch numbers per second, and if the epoch numbers
are 25 bits long, then we are effectively setting a limit of 224 epoch
numbers over 224−7 seconds (about 1.5 days).

Second, we need to allow for proper timeouts on epoch infor-
mation. To do this at a node hearing the information directly, for
example in a ROUTE REQUEST or ROUTE REPLY, we simply set
a timeout after which the epoch number for that information is no
longer valid. We do not require that the link be discarded after the
epoch number is invalid; we merely flag the link to indicate that
it is older than all epoch numbers. This entry can be flagged, for
example, by setting the epoch number to 0, and ensuring that nodes
do not use 0 as a valid epoch number. At intermediate nodes, we

27

need a way to know how old an epoch number is, in order to set this
timeout correctly. To limit network overhead, we use a conservative
approximation based on a generation number. We choose a limited
generation number space and specify that each node increase the
generation number as the information ages. For example, if the
epoch number is valid for 131072 seconds, and there are 128 num-
bers in the generation number space (7 bits), then one generation is
consumed every 1024 seconds.

Whenever a packet is sent with a source route, the node inserts
into the source route in the packet an epoch and generation number
for each link in the source route. The epoch number is chosen to
be the epoch number corresponding to the link in the node’s Route
Cache. To choose the generation number, the node conservatively
estimates τ , the time (at this node) of the arrival of this packet at the
last node hearing this packet. The node then finds the generation
number for that link at that time, increases it by one, and uses that
as a generation number for that link in the source route.

For example, suppose a node holds a link for which intends to
increment the generation number one second later, and the node
sends a packet along a route using that link. If the node estimates
the end-to-end delay for this packet to be less than one second, the
packet’s generation number for that link will be 1 greater than the
generation number in the cache. If the node estimates the end-to-
end delay as being between one and two seconds, the generation
number chosen for the packet will be 2 greater than the generation
number in the cache. Whenever the generation number is increased,
the node checks if the number has overflowed. If so, the epoch
number is set to a special value (such as 0), and nodes hearing this
link can cache it only if it does not conflict with a previously held
broken link.

The end-to-end delay estimates required by the protocol can be
provided by the network, for example using QoS extensions to
DSR [14]. It can also be chosen by multiplying a large factor
(such as 10) times prior delay measurements to achieve a conser-
vative estimate of the upper bound on end-to-end delay. Finally, in
Section 3.4, we present a technique to provide hard guarantees on
end-to-end delay in a wireless ad hoc network.

3.3. Reducing the Generation Number

In Section 3.2, we presented a very conservative approach to the
use of generation numbers. However, the purpose of generation
numbers is simply to allow an epoch number to expire before
wraparound. As currently described, this is implemented by wrap-
ping around the generation number before the epoch number could
wrap around, based on the maximum rate at which epoch num-
bers can be consumed. Since reaching the maximum rate should
be a rare occurrence, we describe a mechanism for compensating
the stored generation numbers when epoch numbers are used at a
slower rate.

We denote the number of bits allocated to the epoch number as
e, the number of bits allocated to the generation number as g, and
denote the maximum rate at which epoch numbers are consumed
to be 2r per second. Using the technique described above, a node
increments the generation number for each link in its route cache
every 2e−r−g−1 seconds. Given the conservative maximum rate,
the expectation is that after n more epoch numbers are used at the
source, the generation number at any node in the network is (at
least)

n2−r

2e−r−g−1
= n2g−(e−1) .

If epoch numbers were actually used at a slower rate, it is possible
to revise the generation number for earlier epoch numbers. For

example, if a node has a link from some node A with epoch number
x, and another link from the same node with epoch number x + n,
the generation number of the epoch x link needs to be no more than
the generation number of the epoch x+ n link plus

⌈
n2g−(e−1)

⌉
.

To implement this generation number reduction, when a node
hears a new epoch number x (with generation number g) for some
other node, the node searches its route cache for links originating
from that other node for which the epoch number on that link is
less than the new epoch number. For each such link, if that link
has epoch number x−n and generation number g′, the generation
number of that link can be set to

min
(
g′, g +

⌈
n2g−(e−1)

⌉)
.

3.4. Hard Latency Guarantees for Networks

In this section, we focus on providing a bounded latency at each
hop in an ad hoc wireless network; since DSR uses source routes, a
hard bound on per-hop latency also provides a hard bound on end-
to-end latency. (Although salvaging breaks this invariant, it can
be restored by using the value of the IP Time-To-Live (TTL) field,
rather than the length of the source route, to bound the end-to-end
latency; furthermore, with epoch numbers, we are concerned only
with the lifetime of the source routes themselves.) If there are no
explicit mechanisms to provide hard bounds on latency, a packet
with an old epoch number can be held in a transmission buffer at
some node indefinitely, and when finally transmitted, may appear
to be a very fresh epoch number. A node receiving a source route
with such an epoch number would then disregard ROUTE ERROR

messages on that link for a long time. A number of other ad hoc
network routing protocols rely on such bounds in network transmis-
sion time; the mechanism described here can be used in conjunction
with such protocols to ensure correctness.

To place a hard bound on the time a packet can spend traversing
a node, we assume that the communication time between the pro-
cessor and any network interface at a node is bounded by a known
time tnet. We also assume that a timer can be set that allows an
interrupt handler to be called at the node within a fixed amount of
time tinter after the set time, and that each network interface at a
node supports a reset operation, which discards any packets con-
tained within that network interface’s transmission buffer within a
bounded amount of time treset. Finally, we assume a limited, known
maximum decoding time between when a packet finishes arriving
at a node and when the node can pass it up to the network layer.

We limit the amount of time a packet can spend in software in-
terface queues by timestamping each packet as it enters the queue
and removing any packets that are too old before they can enter a
hardware queue. We then limit the amount of time that the packet
can spend in a hardware queue by setting a timer and canceling it
if the packet is successfully transmitted. If the timer expires, the
network interface is reset, limiting the hardware latency to

thw + 2tnet + tinter + treset ,

where thw is the timer duration set when a packet first enters the
hardware interface. Finally, we assume that the nodes can know
some transmission latency bound, based on the minimum trans-
mission bit rate and a maximum transmission range. These three
factors can be bounded, even in the presence of fail-stop failures.

Many of these assumptions can be relaxed in an ad hoc network
if only one network interface at each node is used for routing, and
if that network interface maintains an accurate clock. (More pre-
cisely, if packets are only forwarded on their incoming network

28

interface, this algorithm can work.) Each packet passed from the
network interface to the processor is stamped with the time read
from the clock in the network interface; a packet to be sent can also
contain a time after which the network interface should not trans-
mit the packet. To impose a limit on processing time and Medium
Access Control (MAC) contention time, the node simply adds the
maximum acceptable processing time and contention time to the
value received from the network interface and uses that time as the
limit. Since the time limit and the receive time are derived from
the same clock, any amount of delay in the asynchronous network
between the processor and network interface does not affect such
a bound. The transmission latency can be bounded as described
previously.

3.5. Proactive ROUTE ERRORS

In general, detecting a broken link is fairly expensive, due to the
number of retransmissions required before a node can determine
that the link has broken. Also, many different MAC layers use an
exponential backoff between consecutive retransmission attempts,
resulting in significant latency. To reduce such unnecessary addi-
tional link breakage detection latency, a forwarding node can check
each link against its cache for freshness. If any link in the source
route has an epoch number less than or equal to the epoch number
of that broken link in the forwarding node’s cache, the forward-
ing node returns a gratuitous ROUTE ERROR to the source of the
packet and discards the packet.

4. ANALYSIS

4.1. Network Overhead

To use epoch and generation numbers for all cache entries, we in-
clude such numbers for each address in each source route, ROUTE

REQUEST, ROUTE REPLY, and ROUTE ERROR packet. As a result,
network overhead increases by approximately the ratio between the
size of the epoch information and the size of the network address.
For example, if a network address is 32 bits, the use of a 7-bit gen-
eration number and 25-bit epoch number represents a doubling of
this overhead. If epoch numbers are rate-limited to 128 per second,
then half of the epoch number space is consumed in 131072 sec-
onds, and each generation number can be used for 1024 seconds.
This allows a single link to be overheard as many as 64 generations
after when it was learned, even if as much as 17 minutes elapses
between each generation (from learning the link to passing along
knowledge of the link).

4.2. Storage Overhead

Our epoch number scheme adds a constant factor to the storage
overhead in a link-state cache [3], since each link must be repre-
sented. Since the amount of information stored per link, including
the epoch information, is constant, this additional information is
only a constant factor more than the overhead already required by
a link-state cache, which is O(V), where V is the number of links.

4.3. Theoretical Analysis

The following two properties hold for a route cache using per-
fect epoch information (that is, epoch information with unbounded
epoch numbers and with no timeout).

First, if a node has heard a ROUTE ERROR for some link, then
the node will not add that link back to its route cache as a result of

the node overhearing routing information that was originally dis-
covered before the ROUTE ERROR was sent. A node discovers the
existence of a new link to a neighbor node as a result of originating
or forwarding a ROUTE REQUEST that is received by that neigh-
bor. When the node originates or forwards this REQUEST, the node
begins a new epoch if it has sent any ROUTE ERRORs during its
current epoch, and the REQUEST is the first action by the node in
this new epoch. The epoch number included in the REQUEST is
thus greater than the epoch number included in the node’s earlier
ROUTE ERROR (that reported that its link to that neighbor had bro-
ken). As the ROUTE ERROR information and the knowledge of the
new link (from the ROUTE REQUEST) are learned by other nodes,
the relative order of the two pieces of information can always be
determined correctly by comparing these two epoch numbers from
the node that assigned them.

Second, after hearing a ROUTE ERROR for some link and re-
moving that link from its route cache, if the node overhears routing
information indicating the existence of that link, the node will add
that link to its route cache if that routing information was originally
discovered after the ROUTE ERROR was sent. As above, the epoch
number included in the ROUTE ERROR and the epoch number as-
sociated with the new link (from the ROUTE REQUEST by which
it was discovered) are assigned by the same node (the node at the
leading edge of that link). As the ROUTE ERROR information and
the knowledge of the new link are learned by other nodes, the rel-
ative order of the two pieces of information is clear from the order
of the two epoch numbers. If the epoch number for the new link is
greater than the epoch number for the ROUTE ERROR, then it was
discovered by the node at the leading edge of that link after that
same node had previously detected the link as broken, indicating
that this information is more recent and can be added to the route
cache.

When the techniques described in Section 3.3 are not used, cer-
tain properties are obtained even when epoch numbers can wrap
around, and when generation numbers are used to maintain cor-
rectness. In particular, a ROUTE ERROR that is directly heard will
not have a higher generation number than any link detected before
it, and therefore the epoch number of any directly heard ERROR

will not be set to 0 until all the previously learned links (whether
directly or indirectly) have also had their epoch number set to 0. As
a result, directly heard ERRORs have precedence over all older link
discoveries.

5. CONCLUSION

In this paper, we have presented new a solution to the cache stale-
ness problem in on-demand ad hoc network routing protocols such
as DSR [10], LAR [12], SSA [2], and ABR [13]. Our solution
performs as well as we could hope: in particular, stale information
generally cannot override fresh information. We did this without
relying on a negative cache, and without significantly increasing
the network overhead or changing the basic functionality of the
underlying protocol. In fact, our modifications do not directly in-
crease the packet overhead. Our solution works by providing ex-
actly the information needed to sequence discovery of new network
links and notification of broken links, thus preventing nodes from
re-learning stale cache information.

In addition, we have also discussed techniques for providing hard
latency limits on transmissions in an ad hoc network. Such tech-
niques can also be applied to other protocols that require such hard
limits. This approach can also easily be generalized to support
nodes having more than one network interface.

29

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for their comments
that have helped to improve the presentation of the paper.

This work was supported in part by the U.S. National Sci-
ence Foundation under grant CCR-0209204, by NASA under grant
NAG3-2534, and by a gift from Schlumberger. The views and
conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official poli-
cies or endorsements, either express or implied, of NSF, NASA,
Schlumberger, Rice University, Carnegie Mellon University, or the
U.S. Government or any of its agencies.

REFERENCES

[1] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun
Hu, and Jorjeta Jetcheva. A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing Protocols.
In Proceedings of the Fourth Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking
(MobiCom’98), pages 85–97, October 1998.

[2] Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and
Satish K. Tripathi. Signal stability-based adaptive routing
(SSA) for ad hoc mobile networks. IEEE Personal Commu-
nications, 4(1):36–45, February 1997.

[3] Yih-Chun Hu and David B. Johnson. Caching Strategies
in On-Demand Routing Protocols for Wireless Ad Hoc
Networks. In Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCom
2000), August 2000.

[4] Yih-Chun Hu and David B. Johnson. Design and Demonstra-
tion of Live Audio and Video over Multihop Wireless Ad Hoc
Networks. In Proceedings of the MILCOM 2002 IEEE Mili-
tary Communications Conference, October 2002. To appear.

[5] IEEE Computer Society LAN MAN Standards Committee.
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, IEEE Std 802.11-1997. The In-
stitute of Electrical and Electronics Engineers, New York,
New York, 1997.

[6] Internet Engineering Task Force MANET Working Group.
Mobile Ad Hoc Networks (MANET) Charter. Available at
http://www.ietf.org/html.charters/manet-charter.html.

[7] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Miel-
czarek, and Mikael Degermark. Scenario-based Performance
Analysis of Routing Protocols for Mobile Ad-hoc Networks.
In Proceedings of the Fifth Annual International Conference
on Mobile Computing and Networking (MobiCom 1999),
pages 195–206, August 1999.

[8] David B. Johnson. Routing in Ad Hoc Networks of Mobile
Hosts. In Proceedings of the IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA’94), pages 158–
163, December 1994.

[9] David B. Johnson and David A. Maltz. Dynamic Source Rout-
ing in Ad Hoc Wireless Networks. In Mobile Computing,
edited by Tomasz Imielinski and Hank Korth, chapter 5, pages
153–181. Kluwer Academic Publishers, 1996.

[10] David B. Johnson, David A. Maltz, and Josh Broch. The
Dynamic Source Routing Protocol for Multihop Wireless
Ad Hoc Networks. In Ad Hoc Networking, edited by
Charles E. Perkins, chapter 5, pages 139–172. Addison-
Wesley, 2001.

[11] John Jubin and Janet D. Tornow. The DARPA Packet Radio
Network Protocols. Proceedings of the IEEE, 75(1):21–32,
January 1987.

[12] Young-Bae Ko and Nitin Vaidya. Location-Aided Routing
(LAR) in Mobile Ad Hoc Networks. In Proceedings of the
Fourth Annual International Conference on Mobile Comput-
ing and Networking (MobiCom 1998), pages 66–75, October
1998.

[13] Sung-Ju Lee, Mario Gerla, and Chai-Keong Toh. A simula-
tion study of table-driven and on-demand routing protocols
for mobile ad hoc networks. IEEE Network, 13(4):48–54, July
1999.

[14] David A. Maltz. Resource Management in Multi-hop Ad Hoc
Networks. Technical Report Technical Report CMU-CS-00-
150, CMU School of Computer Science, November 1999.

[15] David A. Maltz, Josh Broch, Jorjeta Jetcheva, and David B.
Johnson. The Effects of On-Demand Behavior in Routing
Protocols for Multi-Hop Wireless Ad Hoc Networks. IEEE
Journal on Selected Areas in Communications, 17(8):1439–
1453, August 1999.

[16] Mahesh K. Marina and Samir R. Das. Performance of Route
Caching Strategies in Dynamic Source Routing. In Proceed-
ings of the 2nd Wireless Networking and Mobile Computing
(WNMC), April 2001.

[17] Asis Nasipuri, Robert Castaneda, and Samir R. Das. Per-
formance of Multipath Routing for On-Demand Protocols in
Ad Hoc Networks. ACM/Kluwer Mobile Networks and Appli-
cations (MONET) Journal, 6(4):339–349, 2001.

[18] Aristotelis Tsirigos, Zygmunt J. Haas, and Siamak Tabrizi.
Multipath Routing in Mobile Ad Hoc Networks or How to
Route in the Presence of Topological Changes. In Proceed-
ings of the MILCOM 2001 IEEE Military Communications
Conference, October 2001.

30

